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Abstract
Materials generation is an essential task in material
science that aims to discover new materials. While
most of the existing models have shown interesting
results in simulation, they struggle to produce new
original and stable materials. This paper discusses
the salient properties required for material gener-
ation and studies the difficulties related to material
pattern repetition, which impacts the stability of the
generated structures.

1 Introduction
Crystalline materials are involved everywhere in our modern
society. From metal alloy to semi-conductor, several techno-
logical objects contain crystalline materials. Discovering new
materials remains a difficult task in material science. While
existing algorithms can search for new structures in the ma-
terials space [Pickard and Needs, 2011], searching for a new
material with a given set of desirable properties is not a trivial
task. The set of potential candidate materials is not countable
by a computer, and the portion of stable materials (i.e. materi-
als that can exist without self-destructing) is small. Moreover,
estimating the properties of a single material with chemical
simulation as Density Functional Theory (DFT) is computa-
tionally expensive. To this end, methods based on evolution-
ary algorithms (e.g. [Oganov et al., 2011]) are introduced for
generating new materials from existing datasets composed of
stable materials. However, most of these approaches work by
hybridization and mutation of existing materials. As a conse-
quence, these methods are not able to find complex materials.

Discovering new materials is a challenging problem. But
contrary to most generation problems, theoretical chemistry
provides a powerful set of tools to analyse synthetic and real
data. As a matter of fact, simulation techniques like hartree-
fock or DFT are able to estimate the properties of a given
structure by applying physics laws. Consequently, the sta-
bility of the materials can be estimated through simulation.
These methods can also be used to perform the relaxation of
crystalline materials. Relaxation is the process of minimiz-
ing the energy of a crystalline structure by deforming it. This
process is very common in material science to study a given
material. It permits the discovery of new materials since min-
imizing the total energy of the structure allows it to be more
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Figure 1: The energy of a structure is given by its geometry and
chemistry. Stable structures are the local minima of the energy
(green dots). Relaxing a structure is the process of modifying the
geometry of a structure to minimize its energy (an unstable structure
represented as a red dot converge to the nearest stable minima)

stable. Consequently, the local minima of the energy corre-
sponding to stable materials and relaxation lead to producing
stable crystalline structures from an initially unstable crystal
around the stable structures in the materials space. This is
illustrated in Figure 1.

Several methods were recently introduced for chemical
simulation either by enhancing current algorithms with ma-
chine learning techniques (e.g. [Yang et al., 2021]) or by
using end-to-end models (e.g. [Ekström Kelvinius et al.,
2022]). Most of these approaches focus on accelerating DFT
by approaching relaxation as a supervised task. End-to-end
models generally require expensive labels to be trained as
interaction forces. However, these labels are generally not
available and need to be produced through DFT calculation.
Thus, the benefits of end-to-end models is limited because
such models required data from atomistic simulation. Finally,
even if the relaxation may lead to a crystalline structure, there
is no guaranty on its stability. In fact, most of the random
structures do not result in stable structures. Consequently,
approaches based on simulation for new materials discovery
are limited.

Another direction consists in directly generating stable
crystalline structures using machine learning techniques. In
this case, the generative process can be performed with suc-
cessive actions applied to the structure [Xie et al., 2022]. This
process doesn’t require strictly following physics laws as long
as the stable points (i.e. local minima of the energy) learned
by the machine learning models remain the same as the real
stable points. This fact can be advantageous in some cases
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because the realistic relaxation of a random structure is not
guaranteed to converge to a stable material. As a result, learn-
ing realistic stable points without realistic physics can help
machine learning models produce stable structures.

Indeed, graph neural networks (GNN) have already
been used for the representation and generation of organic
molecules [Satorras et al., 2021]. However, crystalline mate-
rials are known to be more difficult to generate since they gen-
erally have more complicated chemistry. Also, they contain
repetitive patterns defined by the lattice of the crystals, which
make them harder to process. In this paper, we present how
graphs representation of materials are defined. We also dis-
cuss some important properties required for generative mod-
els.

2 Problem statement
Crystalline systems As molecules, crystalline systems can
be defined as coloured point clouds. However, as crystals
are periodic structures, additional information about how the
point could is repeated in the space is required to represent
it. The periodicity of the material can be then represented
as a network where a group of points is repeated by discrete
translation, which is equivalent to tiling space with a paral-
lelepiped containing a cloud of atoms as illustrated in Figure
2.

As a result, a periodic system can be describe as atomic
positions xi ∈ [0, 1[3 with an associated feature space repre-
senting the chemical information of each atom zi ∈ F and a
lattice ρ ∈ GL3(R) representing the periodicity of the mate-
rial. The infinite point cloud generated by this representation
can be defined as

{(
ρ · (xi + τ), zi

)
| τ ∈ Z3, 1 ≤ i ≤ n

}
⊆ R3 × F (1)

Where τ act like a Z3 vector that translate the point cloud.

Material graph There are multiple ways to define the
graph of a material. Chemical bonds can be used to build
the set of edges, but generally, edges are built from the atoms
under a given threshold distance of from the k nearest neigh-
bourhood [Xie and Grossman, 2018]. The resulting graph is
a multi-graph because the local environment of an atom can
be on a translated point cloud near the border of the lattice as
depicted in Figure 2. As a result, an edge can have multiple
edges between a pair of nodes and between a node with itself.

Figure 2: The periodic structure of a material is represented as a
lattice (in dotted lines). The multi-graph associated with a material
(blue arrow) can overlap on the adjacent repetition of the lattice and
a pair of nodes can be connected multiple time.

Material deformation To tackle the crystalline system
generation problem, we should define action on the geome-
try of the material. This action can be seen as an action on
the lattice of the material ρ resulting in the updated lattice ρ′

and action on the atomic positions xi resulting in the updated
atomic position x′

i. {
ρ′ = gρ

x′
i = [xi + gi]

. (2)

In this case, the goal is to predict the action g ∈ GL3(R)
on the lattice and the actions gi ∈ R3 on the atomic position.
The atomic positions are brought back into the lattice of the
crystal by truncation.

3 Method
Equivariance To obtain meaningful actions applied to a
material, we should satisfy the equivariance property. Indeed,
translations and rotations have no impact on the material’s
properties. Consequently, a machine learning model acting
on the material should not be dependent on the orientation
and position of the structure but only be dependent on its ge-
ometry as shown in Figure 3.
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Figure 3: Equivariance between the action applied on the material g
and the actions of translation and rotation group h ∈ R3∪SO(3). M
and M ′ denoting the original material and the material after having
applied the action g.

Actions on the lattice When g acts on rho the lattice of the
crystal, we would restrain g to the group of actions deforming
the structure. However, any matrix in R3×3 can be decom-
posed as a sum of a symmetric and an anti-symmetric matrix.
As we define the action of g in GL(3), the anti-symmetric part
of the transformation can be seen as a rotation. But as we dis-
cussed earlier, applying rotations on a crystal doesn’t act on
a material as the rotated material is equivalent to the original
material. This is illustrated in Figure 4. Consequently, it is
better to restrain g to GL(3) \ SO(3). In other words, to re-
strain g to the subset of matrices of GL(3) that are symmetric.

Figure 4: The SO(2) group doesn’t act on the materials but only
rotates them without deformation.

Acting on the crystalline structure To act on both the lat-
tice and the atomic position, we can define actions on the edge
of the graph. These actions can be then decomposed into a



Figure 5: Actions defined on the edges of the graph can be decom-
posed into action on the atomic positions and action on the lattice of
the crystalline material.

global action on the lattice of the crystal and local action on
the atomic position. In order to define these actions, the con-
tributions of all edges are aggregated to compute the action
on the lattice. To act on the atomic positions, only the actions
of the edges connected to the node are taken into account.

4 Conclusion
Crystalline materials are difficult to process because of the
complexity and the variety of their chemistry, but also be-
cause of their repetitive structure. However, materials can
be represented as graphs containing both chemical and geo-
metrical information about the structures. Consequently, geo-
metric machine learning techniques such as graph neural net-
works can be used in a wide variety of tasks including super-
vised and unsupervised learning. But in order to enhance the
generalization capability of machine learning models, some
properties such as the symmetry of the actions on the lattice
or as equivariance can be beneficials.
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