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Abstract
For many applications, analyzing the uncertainty of
a machine learning model is indispensable. While
research of uncertainty quantification (UQ) tech-
niques is very advanced for computer vision appli-
cations, UQ methods for spatio-temporal data are
less studied. In this paper, we focus on models
for online handwriting recognition, one particular
type of spatio-temporal data. The data is observed
from a sensor-enhanced pen with the goal to clas-
sify written characters. We conduct a broad evalua-
tion of aleatoric (data) and epistemic (model) UQ
based on two prominent techniques for Bayesian
inference, Stochastic Weight Averaging-Gaussian
(SWAG) and Deep Ensembles. Next to a better un-
derstanding of the model, UQ techniques can detect
out-of-distribution data and domain shifts when
combining right-handed and left-handed writers (an
underrepresented group).

1 Introduction
Traditional machine learning (ML) algorithms assume train-
ing and test datasets to be independently and identically dis-
tributed [Sun et al., 2016; Schölkopf et al., 2021]. For
many real-world applications, data often changes over time
and space, and hence, training and test data originate from
different distributions. This can cause ML models to fail
due to a domain shift between training and test data [Sun
et al., 2016]. Transfer learning [Pan and Yang, 2009;
Shao et al., 2014] and domain adaptation [Long et al., 2014;
Saenko et al., 2010] techniques can compensate for this do-
main shift. A first step in adapting for this domain shift is
its detection, e.g., by having reliable uncertainty estimates of
the model predictions [Li et al., 2022]. Thus, to estimate the
uncertainty of the model, a robust uncertainty quantification
(UQ) technique is required that runs in real-time.
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Approximate Bayesian Inference Techniques. In the field
of deep learning (DL), UQ has lately seen a steep increase
in interest. Recently, many promising methods have been
proposed such as Variational Online Gauss-Newton (VOGN)
[Khan et al., 2018], Stochastic Weight Averaging-Gaussian
(SWAG) [Maddox et al., 2019], Bayes by Backpropagation
(BBB) [Blundell et al., 2015], and Laplace Approximation
[Daxberger et al., 2021]. Another widely used technique are
Deep Ensembles [Lakshminarayanan et al., 2017], which of-
ten yield well-calibrated models while being relatively easy
to implement.

Decomposing Uncertainty. Several ways for estimating
and decomposing uncertainty have been proposed. A com-
mon distinction is made between aleatoric uncertainty, which
refers to the variability in the data, and epistemic uncer-
tainty, which is the model’s uncertainty caused by a lack of
knowledge [Hüllermeier and Waegeman, 2021]. Building on
[Kendall and Gal, 2017], [Kwon et al., 2018] argue that neu-
ral networks (NNs) for classification are basically generalized
linear models with error structure of multinomial and com-
posite link functions. Hence, to acknowledge that the vari-
ance of a multinomial outcome is a function of the mean out-
come, they propose to directly compute the variability in the
softmax outputs. Another method to dissect total predictive
uncertainty has been put forward by [Smith and Gal, 2018]
and similarly by [Depeweg et al., 2018] who propose to ex-
tract epistemic and aleatoric uncertainties from the predictive
distribution of a Bayesian NN by calculating the entropy and
mutual information. For an extensive survey of related ap-
proaches, see [Gawlikowski et al., 2021].

UQ for OnHW. UQ techniques have been broadly evalu-
ated in computer vision applications such as image classifica-
tion [Kendall and Gal, 2017], i.e., optical character recog-
nition (OCR), but methods have rarely been evaluated on
spatio-temporal datasets [Cai et al., 2014]. OCR is con-
cerned with offline handwriting recognition from images. In
contrast, online handwriting (OnHW) recognition works on
different types of spatio-temporal signals and can make use
of temporal information such as writing speed and direction
[Plamondon and Srihari, 2000]. While many recording sys-



tems make use of a stylus pen together with a touch screen
surface, sensor-enhanced pens, e.g., [Ott et al., 2020; 2022a;
2022c; 2022d], based on inertial measurement units (IMUs)
enable new applications. These pens stream data from ac-
celerometer, gyroscope, magnetometer and force sensors in
real-time represented as spatio-temporal multivariate time-
series (MTS). The advantage of exploiting this temporal in-
formation is the ability to better distinguish between similarly
shaped letters from dynamic information (number of strokes
etc.). Spatio-temporal data can further help to identify certain
characteristics in the data. [Ott et al., 2022b], e.g., showed the
domain shift between right-handed and left-handed writers by
analyzing feature embeddings of their model for OnHW data.

Contribution. In this paper we evaluate the uncertainty of
OnHW model predictions with SWAG [Maddox et al., 2019]
and Deep Ensembles [Lakshminarayanan et al., 2017] for
spatio-temporal reasoning, assessment of out-of-distribution
detection, and pattern and failure recognition. We use uncer-
tainty decompositions based on the method by [Kwon et al.,
2018] and [Smith and Gal, 2018] to evaluate the UQ tech-
niques. Our claims are further supported by utilizing con-
fidence and accuracy metrics to estimate the expected cali-
bration error (ECE) [Guo et al., 2017]. For an OnHW task
with domain shift between right- and left-handed writers, we
evaluate uppercase, lowercase and combined character clas-
sification tasks. Our source code will be available upon pub-
lication.1

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work. In Section 3, we describe
the background of Bayesian modeling and approximate in-
ference. The experimental setup is described in Section 4,
and results are discussed in Section 5.

2 Related Work
We first present related work of UQ with focus on spatio-
temporal reasoning in Section 2.1. Section 2.2 summarizes
state-of-the-art results for OnHW recognition.

2.1 UQ for Spatio-Temporal Reasoning
[Wu et al., 2021] analyzed Bayesian and frequentist UQ
methods for spatio-temporal forecasting on network traffic,
epidemics and air quality datasets. Their evaluation shows
that Bayesian methods are typically more robust in mean
prediction, while confidence levels from frequentist meth-
ods provide better coverage over data variations (i.e., out-of-
distribution data). Furthermore, traditional learning schemes
lack knowledge about uncertainty. STUaNet [Zhou et al.,
2021] addresses this issue for spatio-temporal human mo-
bility forecasting by injecting controllable uncertainty. This
allows insights to both, UQ and weak supervised learning.
[Gómez et al., 2021] focused on the spatio-temporal uncer-
tainty of urban prediction (where and when a piece of land be-
comes urban). [Li et al., 2022] argue that the feature statistics
such as mean and standard deviation (the domain character-
istics of the training data), can be manipulated to improve the

1 Code and datasets: www.iis.fraunhofer.de/de/ff/lv/dataanalytics/
anwproj/schreibtrainer/onhw-dataset.html

generalizability of DL models by modeling the uncertainty of
domain shifts with feature statistics during training (that fol-
low a multivariate Gaussian distribution). In the context of
domain adaptation, [Cai et al., 2014] adressed the extraction
of domain-invariant representations for MTS classification.

2.2 Online Handwriting Recognition
[Ott et al., 2020] initially proposed the OnHW-chars dataset
and evaluated machine and DL techniques for the OnHW
MTS classification task. The dataset contains right-handed
and left-handed writers with a domain shift between both
groups of writers (i.e., domains). [Ott et al., 2022b] showed
that transfer learning from small adaptation datasets results
in poor model performances. Hence, their domain adaptation
approach transforms features from left-handed writers into
the domain of features from right-handed writers by optimal
transport techniques. A reliable UQ method could identify
out-of-distribution samples and only apply the transformation
on samples for which the model has a high uncertainty. [Ott
et al., 2022a] combined offline and online handwriting recog-
nition with a cross-modal representation learning technique
by increasing the dataset size by using generative models. A
robust uncertainty estimation technique could select samples
with high model uncertainty.

3 Methodological Background
In the following we describe Bayesian model averaging in
Section 3.1 and the two employed Bayesian UQ methods in
Section 3.2. The decomposition of total predictive uncer-
tainty into aleatoric and epistemic uncertainty is discussed in
Section 3.3.

3.1 Bayesian Model Averaging
Bayesian approaches in DL naturally represent uncertainty
by placing a distribution over model parameters and then
marginalizing these parameters to form a predictive distribu-
tion (Bayesian model averaging) [Hoeting et al., 1999]. Let
p(θ|D) be the posterior distribution over model parameters
θ, i.e., real-valued weights in the NN, given training dataset
D, and let p(y∗|x∗, θ) denote the probability distribution over
model outputs y∗ (predicted classes), given sample x∗, and
model weights θ. For the OnHW classification task, the sam-
ple x∗ is an MTS U = {u1, . . . ,uq} ∈ Rq×l, an ordered
sequence of l = 13 streams with ui = (ui,1, . . . , ui,l), i ∈
{1, . . . , q}, where q = 64 is the length of the MTS. The train-
ing set D is a subset of the array U = {U1, . . . ,UnU

} ∈
RnU×q×l, where nU is the number of time-series. The aim is
to predict an unknown class label y∗ ∈ Y with K classes (i.e.,
character labels) for a given MTS. The predictive distribution
of the target variable is then given by

p(y∗|x∗, D) =

∫
p(y∗|x∗, θ)p(θ|D)dθ. (1)

In practice, we can approximate this integral by drawing S
Monte Carlo samples from the posterior distribution:

p(y∗|x∗, D) ≈ 1

S

S∑
s=1

p(y∗|x∗, θs) , θs ∼ p(θ|D). (2)

https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html
https://www.iis.fraunhofer.de/de/ff/lv/dataanalytics/anwproj/schreibtrainer/onhw-dataset.html


The predicted probability of an outcome is thus a weighted
average over its probabilities with the weights being deter-
mined by p(θ|D).

3.2 Approximate Bayesian Inference
In order to apply Bayesian inference to an NN, we need to
compute the posterior p(θ|D) of the NN weights. As the
computation of the posterior is usually intractable, a (local)
approximation is often used. This can be addressed by SWAG
and Deep Ensembles with the latter abstaining from explicitly
modeling p(θ|D) – nevertheless, this method can be consid-
ered to be in the field of approximate Bayesian inference.
Stochastic Weight Averaging-Gaussian (SWAG). SWAG
[Maddox et al., 2019] is a Bayesian inference technique for
DL that builds on Stochastic Weight Averaging (SWA) [Iz-
mailov et al., 2018]. SWA computes an average of stochastic
gradient decent (SGD) iterates to obtain information about
the geometry of p(θ|D) from its trajectory. This posterior is
then approximated by a Gaussian with simplified covariance
structure and reduced dimensionality.
Deep Ensembles. Deep Ensembles are a committee of in-
dividual NNs initialized with a different seed [Lakshmi-
narayanan et al., 2017]. The initialization serves as the only
source of stochasticity in the model parameters which are oth-
erwise not random; Deep Ensembles can optionally be cou-
pled with a differently shuffled data loader. In contrast to
SWAG, results are obtained by averaging the predictions of
M independently trained networks instead of explicitly mod-
eling a posterior and sampling from it. [Ovadia et al., 2019]
point out that even an ensemble size of M = 5 performs well,
strengthening its reputation as a “gold standard” for accurate
and well-calibrated predictive distributions.

3.3 Uncertainty Decomposition
In the literature two sources of uncertainty are commonly
considered [Hüllermeier and Waegeman, 2021]: (1) Aleatoric
uncertainty represents stochasticity inherent in the data. For
the OnHW application this can be sensor noise induced by the
ballpoint pen on the paper or by shaky hands of the writer. In
particular, even with infinitely many data points, there will al-
ways be some variation in the data. (2) Epistemic uncertainty
is the model uncertainty, which, in theory, can be reduced to
zero for an increasing amount of observations. Various ap-
proaches of measuring uncertainty exist in the literature. We
consider two approaches, both providing justified and mutu-
ally complementing insights into our trained models and data
situation: uncertainty decomposition based on the softmax
output variability [Kwon et al., 2018] in Section 3.3.1 and
based on information theory in Section 3.3.2.

3.3.1 Uncertainty Decomposition based on [Kwon et al.]
The definition proposed by [Kwon et al., 2018] is based on
considerations by [Kendall and Gal, 2017] and presents a
novel way to estimate predictive uncertainty by breaking it
down into

1

T

T∑
t=1

diag(ĉt)− ĉtĉ
⊤
t︸ ︷︷ ︸

aleatoric uncertainty

+
1

T

T∑
t=1

(ĉt − c̄)(ĉt − c̄)⊤︸ ︷︷ ︸
epistemic uncertainty

, (3)

with ĉt = (ĉt,1, . . . , ĉt,K) ∈ [0, 1]K being the softmax output
of the NN based on one forward pass (out of T stochastic
forward passes),

∑K
i=1 ĉt,i = 1, and c̄ = 1

T

∑T
t=1 ĉt.

Interpretation. Equation 3 yields two K×K matrices with
different interpretations. For the aleatoric part, diagonal val-
ues are in {x − x2 | x ∈ [0, 1]}, with the maximum uncer-
tainty for x = 0.5. If the model is “unsure”, meaning that
the model neither displays confidence that a prediction cor-
responds to a certain class nor displays confidence that it is
not, we expect high aleatoric uncertainty. The off-diagonal
elements consist of values in {−x · y | x, y ∈ [0, 1]}, which
yields values on the interval [−0.25, 0]. Lower values corre-
spond to higher data uncertainty. For the epistemic part, the
diagonal contains the squared difference to the mean softmax
outputs (over T samples). The off-diagonal has positive val-
ues when the softmax values coincide and negative values if
the softmax values display an inverse relationship.

3.3.2 Uncertainty Decomposition based on Information
Theory

Another way to decompose predictive uncertainty into an
aleatoric and epistemic part is by following [Depeweg et al.,
2018] and similarly [Smith and Gal, 2018]. Based on princi-
ples from information theory, the Shannon entropy H(p) =

−
∑K

i=1 pilog2(pi) is utilized as a common measure of “in-
formedness” of a single probability distribution p with K out-
comes/classes and the associated probabilities for each i-th
class pi; taking the logarithm to base 2 yields values mea-
sured in bits. The total predictive uncertainty (TU) of the
predictive distribution p(y∗|x,D) can then be quantified by

TU = H
(
p(y∗|x∗, D)

)
≈ H

( 1

S

S∑
s=1

p(y∗|x∗, θs)
)
. (4)

Effectively, this is the entropy of the averaged categorical pre-
dictions, and it includes the two sources of uncertainty we are
interested in.

Aleatoric Uncertainty (AU), Entropy. We can express
aleatoric uncertainty as the expectation over the entropies
of S sampled conditional predictive distributions with fixed
weights, i.e.,

AU ≈ 1

S

S∑
s=1

H(p(y∗|x∗, θs)). (5)

Epistemic Uncertainty (EU), Mutual Information. Fi-
nally, epistemic uncertainty emerges as the difference of total
and aleatoric uncertainty EU = TU −AU , and is equivalent
to the mutual information (MI):

EU = H
( 1

S

S∑
s=1

p(y∗|x∗, θs)
)
− 1

S

S∑
s=1

H(p(y∗|x∗, θs)). (6)

Intuitively, epistemic uncertainty stands for the information
gain about the model parameters that would be obtained when
observing the true outcome. MI is always non-negative, zero
in case of perfect independence of y∗ and θ, and positive
when model uncertainty is present at prediction time.



4 Experiments
In our order to evaluate the efficacy of UQ methods for spatio-
temporal handwriting datasets, we use the OnHW dataset
(Section 4.1) and fit different network architectures (Sec-
tion 4.2). Our evaluation approach is given in Section 4.3.
For architecture and training details and SWAG parameters,
see Appendix A.1. For Deep Ensembles, we choose M = 10
(for a study on number of base learners in Deep Ensembles
vs. SWAG performance, see [Maddox et al., 2019]).

4.1 Online Handwriting Recognition
The OnHW-chars [Ott et al., 2020] dataset consists of record-
ings from a sensor-enhanced ballpoint pen providing 14 sen-
sor measurements: two accelerometers (3 axes each), one gy-
roscope (3 axes), one magnetometer (3 axes), a force sensor
(with which the pen tip touches the surface), and the time
steps. 119 right-handed and nine left-handed writers partic-
ipated in the data collection. Each person was instructed to
write the English alphabet on plain paper six times. This re-
sults in 31,275 right-handed and 2,270 left-handed samples.
The task is to either classify lowercase letters (26 classes),
uppercase letters (26 classes) or combined letters from all 52
classes. For model evaluation, five cross-validation sets are
provided by [Ott et al., 2020] for both writer-dependent (WD)
and writer-independent (WI) MTS classification tasks.

4.2 Neural Network Architectures
We use a modified CNN from [Ott et al., 2020; 2022d] for
feature extraction and combine it with one unit for spatio-
temporal classification to extract important temporal features.
This unit is added before the last dense layer. We compare a
standard long short-term memory (LSTM) cell with 100 neu-
rons, a bidirectional LSTM (BiLSTM) cell with 100 neurons,
and a temporal convolutional network (TCN) with 120 neu-
rons. The last dense layer contains 26 neurons for the low-
ercase and uppercase tasks, or 52 neurons for the combined
task. We interpolate the time-series to 64 time steps without
sensor normalization.

4.3 Evaluation Metrics
Confidence Calibration. Calibration can be understood as
the degree of reliability of a model. According to [Gaw-
likowski et al., 2021], a predictor is well-calibrated if the de-
rived predictive confidence represents a good approximation
of the actual probability of correctness – meaning that 20%
of all predictions with a predictive confidence of 80% should
actually be false. Calibration is thus a notion of uncertainty,
measuring the discrepancy between the model’s forecasts and
(empirical) long-run frequencies [Lakshminarayanan et al.,
2017]. Using the definitions of confidence and accuracy [Guo
et al., 2017], we can make statements about over- and under-
confidence of the model. We have

confidence(be) =
1

|be|
∑
s∈be

ĉs (7)

and
accuracy(be) =

1

|be|
∑
s∈be

1(ŷs = ys), (8)

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

Frequentist 84.62 76.85 89.89 83.01 70.50 64.13
[Ott et al., 2020] TCN TCN TCN TCN TCN LSTM

SWAG 84.44 76.96 87.58 82.21 72.54 66.12
TCN TCN TCN TCN TCN TCN

Deep 83.43 73.41 90.31 81.26 75.51 64.21
Ensembles BiLSTM TCN TCN TCN TCN TCN

Table 1: Accuracies (in %) for models trained on right-handed writ-
ers data and evaluated on right-handed writers data. Second row
shows the respective model. Bold: best results.

with be denoting the set of indices of sampled softmax out-
puts falling into the interval (le, ue]. Commonly, the softmax
output range is divided into ten bins (interval sizes of 0.1).
We can now make statements whether our model is under-
confident

(
accuracy(be) > confidence(be)

)
or over-confident(

accuracy(be) < confidence(be)
)
. It has been shown that

softmax outputs of deep NNs are in general not well cali-
brated and are often either over- or under-confident [Guo et
al., 2017]. Ideally, accuracy(be) ≈ confidence(be), allow-
ing the user to interpret softmax outputs as probabilities and
thereby quantify the prediction uncertainty.

Expected Calibration Error (ECE). The ECE summa-
rizes how far away the confidence is from the actual (empiri-
cal) accuracy [Guo et al., 2017]. It can be defined as

ECE(be) =
E∑

e=1

|be|
n

|accuracy(be)− confidence(be)|, (9)

with n being the number of predicted softmax outputs, and
E being the number of bins. Note that this metric does not
give any information about over- or under-confidence – only
how far away the expected accuracy is from the confidence.
Ideally, the ECE is 0.

Reliability Diagrams. We visualize Equations 7 and 8 as
reliability diagrams [Degroot and Fienberg, 1983] for se-
lected models. Generally, a model is over-confident if the
black bars (displaying the accuracy for one bin) are below the
dashed bisectors. Consequently, if the black bars are above
the bisectors, the model is under-confident. We additionally
plot the histogram [Hollemans, 2020] of the softmax outputs
to get an overview of the distribution.

5 Experimental Results
In the following, we summarize the main results. In general,
the models perform better on WD classification tasks than on
WI tasks. Architectures with TCN units outperform LSTM
and BiLSTM units on most tasks.

Evaluation on Handedness (trained on right-handed writ-
ers). SWAG and Deep Ensemble models perform very sim-
ilarly to frequentist models proposed in [Ott et al., 2020]
in terms of predicitve accuracy (see Table 1), being at most
3% points below and 5% points above a respective frequen-
tist model. When applying models trained with right-handed
data on the left-handed datasets, the performance ranges from
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Figure 1: Information theoretic uncertainty measures for the Deep Ensemble (dashed) and SWAG (non-dashed) CNN+TCN models. The
models are trained on the combined right- and left-handed writers datasets (a and b, left) or only the right-handed writers dataset (a and b,
right), and evaluated on the left-handed writers dataset. We provide results for lowercase, uppercase and combined classification tasks.

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

SWAG right 83.73 76.27 87.10 81.69 72.13 65.41
left 55.51 45.91 55.04 50.67 46.08 39.26

Deep Ensembles right 83.07 73.87 89.92 80.86 75.29 64.22
left 45.25 37.00 62.73 48.31 45.95 33.27

Best BNN Method right 84.44 76.96 90.31 82.21 75.51 66.12
(right-handed) left 42.55 44.19 49.87 48.54 33.68 36.20

Table 2: Accuracies (in %) for best models trained on right- and
left-handed data and evaluated on right-handed or left-handed writ-
ers data separately, compared to the best performing models which
were only trained on right-handed data. Bold: best results.

Method Lowercase Uppercase Combined
WD WI WD WI WD WI

SWAG 81.85 74.24 84.92 79.58 70.37 63.64
TCN TCN TCN TCN TCN TCN

Deep 80.55 71.41 88.07 78.65 73.31 62.14
Ensembles LSTM TCN TCN TCN TCN TCN

Table 3: Accuracies (in %) for models trained on right- and left-
handed writers data and evaluated on right-handed writers data.
Second row shows the respective model. Bold: best results.

33.27% to 49.87% accuracy (see Table 2) which is substan-
tially better than “pure guessing” – our models make in-
formed decisions after shifting domains, albeit at a lower
standard. A possible reason is that certain sensors produce
nearly identical signals regardless of the orientation of the
pen. For example, the accelerometer at the bottom of the pen
should give the same readings for left-handed writers when
writing "I" and "i" as for right-handed writers, since it is
simply a downward motion regardless of the writing hand.

Evaluation on Handedness (trained on right- and left-
handed writers). When evaluating performance on right-
handed data, models trained only on right-handed datasets
consistently outperform models trained on both datasets com-
bined and yield between 2% points and 12% points higher ac-
curacies (see Table 3). This performance loss is compensated
by a performance gain for left-handed data. Still, the perfor-
mance is not up to par with right-handed data; this gap may
be due to a “writing style” particular to every writer that espe-
cially influences the gyroscope and magnetometer measure-
ments. More importantly, left-handed writers have a writing
style different to right-handed writers which is perhaps ex-
actly what the right-handed models never learned in order to

address the style of left-handed writers, underlining the need
for a sufficient amount of samples to get a good representa-
tion of various writing styles.

Analysis of Uncertainty. Figure 1 shows the MI and en-
tropy for SWAG and Deep Ensemble models evaluated on
the left-handed data. The barplots show that the models
trained on only right-handed data display lower uncertainty
(i.e., higher confidence) compared to models trained on com-
bined data. However, this higher confidence is not empiri-
cally justified when looking at the reliability diagrams in Fig-
ure 2, which point out that models trained without left-handed
writers data are miscalibrated and therefore overconfident.
Models trained on the combined writers (Figures 2a and 2c)
provide more realistic accuracies when applied to the left-
handed data (ECE of 6.72). The ECE is even higher (24.24)
for left-handed evaluation without left-handers in the training
set (see Figure 2d). For a separate evaluation for each char-
acter, see Appendix A.2.

5.1 Uncertainty Analysis based on [Kwon et al.]
In Figure 3 we visualize the aleatoric and epistemic uncer-
tainty as well as the confusion matrix for the Deep Ensem-
ble model and the combined task. For SWAG model re-
sults, see Appendix A.3. In the aleatoric uncertainty heatmap
(Figure 3a) we observe a trace with negative values at the
lower end of the scale. Note that for off-diagonal values,
the aleatoric uncertainty is higher for lower softmax values.
Here, two softmax outputs (with the highest values) coincide
on average (see Section 3.3.1). This means that the model
tends to confuse the two classes. The most prominent off-
diagonal strip corresponds to the upper- and lowercase pairs.
This makes intuitive sense since, e.g., the lowercase "u" and
uppercase "U" are written similarly. This effect is conse-
quently not present for less similar pairs like "a" and "A".
We can see this effect also for "l" (lowercase "L") and "I"
(uppercase "i"). A very similar pattern can also be observed
in the confusion matrix (see Figure 3c), confirming that the
trained model is not only unsure about how to classify these
pairs, but is also empirically worse in the respective classifi-
cation task.

These patterns allow for further interesting insights. For
example, one might expect this pattern to occur for "i" and
"j", but the corresponding heatmap entries lack signs of con-
fusion of the model. Similarity between characters conse-
quently hinges on the similarity of motions while writing.
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(c) Evaluated on left-handed writ-
ers data.
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(d) Evaluated on left-handed writ-
ers data.

Figure 2: Reliability diagram for the Deep Ensemble CNN+TCN model trained on the combined WD datasets. a) and c): Trained on the
combined right- and left-handed writers datasets. b) and d): Trained on right-handed writers only.
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(b) Epistemic uncertainty.
ACEG I KMOQSUWY a c e g i kmo q s uwy

A
C
E
G
I

K
M
O
Q
S
U
W
Y
a
c
e
g
i
k

m
o
q
s
u
w
y

0

20

40

60

80

100

Ac
cu

ra
cy

 [%
]

(c) Confusion matrix of accuracy.
Figure 3: Uncertainty prediction for the Deep Ensemble CNN+TCN model trained on the combined WD (right-handed only) dataset. Note
that the color scale is fixed for all subplots for comparability with Figure 4, and that we skipped every second character label for readability.

ABCDEFGH I J KLMNOPQRS TUVWX Y Z

A
B
C
D
E
F
G
H
I
J

K
L

M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0.005

0.000

0.005

0.010

0.015

0.020

0.025

(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.
Figure 4: Uncertainty prediction for the Deep Ensemble CNN+TCN model trained on the uppercase WD (right-handed only) dataset. Note
that the color scale is fixed for all subplots for comparability with Figure 3 and 6.

Two characters with small differences are written similarly
but in different sizes. This also holds for specific parts of the
letters. For example, "n" and "h" have a higher aleatoric
uncertainty in Figure 3a; the major difference being that one
tiny part of "h" is longer.

Somewhat puzzling is that we see the same effect in the

epistemic uncertainty heatmap (see Figure 3b), where such
pairs with high similarity lead to negative values. When one
entry of the softmax output values is below and another entry
above the respective sample mean, negative epistemic uncer-
tainty is implied. This leads to some kind of discriminative
power due to the negative “covariance” for which there is lit-
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(b) Histogram visualizing the
entropy distribution.

Figure 5: Accuracy and entropy for the Deep Ensemble CNN+TCN
model trained on the combined WD (right-handed only) dataset.

tle justification. We thus advise caution when interpreting the
epistemic uncertainty in this context.

5.2 Uncertainty based on Information Theory
We further highlight the trade-off when using information
theory-based measures to decide whether a sample is too un-
certain to classify correctly. This is depicted by Figure 5a
showing the relationship between classification accuracies
and different threshold values. We choose the entropy as
the target metric for uncertainty evaluation (MI would work
analogously). On the x-axis is the accuracy of the samples
above the threshold, i.e., samples our model feels confident
about classifying correctly. On the y-axis is the accuracy
for the samples below the threshold. These values would be
considered as too inaccurate to confidently classify. Setting
the threshold to 2.0 bits would approximately yield an ac-
curacy of 82% for the observations above this threshold and
approx. 31% accuracy for observations below this threshold
(emphasized by the dashed lines). Figure 5b depicts the en-
tropy distribution and further clarifies this point. Convinc-
ingly, the accuracy reduces to almost zero for very high en-
tropy samples. Note that the accuracy does not need to de-
crease with an increasing entropy threshold or even be zero
for very high entropy values, even though this is generally
true for our models.

5.3 Summary and Limitations
Uncertainty Decomposition. Neither uncertainty quantifi-
cation method shows notable differences between aleatoric
and epistemic uncertainty. The heatmaps exhibit the same
“strip” for similar characters and give no hints to different
sources of uncertainty (data-driven or systemic confusion).
The benefits of this kind of uncertainty differentiation are lim-
ited, but measuring the total uncertainty can still be useful for
domain adaptation or the detection of wrong labels.
Real-World Link. Since the models trained on right- and
left-handed writers lead to lower data confidence compared to
models trained only on right-handed writers (see Figure 1), it
is unclear how well the measured MI and entropy translate to
the real-world uncertainty. Therefore, verifying uncertainty
remains a limitation in our interpretation. While we can dis-
criminate between the entropy associated with different sam-
ples, pre-defining thresholds for uncertain samples is chal-
lenging due to the following reasons: (1) Raw sensor data is

elaborate to interpret and making statements about, e.g., the
writing style from sensor data is hardly possible – which, in
turn, is connected to model uncertainty. (2) Interpreting the
graphomotoricity qualitatively, e.g., for teaching hand writ-
ing, a qualified expert in this field is required. (3) Different
writing domains (different pens, surfaces etc.) lead to differ-
ent requirements for the uncertainty threshold.

6 Conclusion
We employed SWAG and Deep Ensembles for OnHW recog-
nition with left- and right-handed writers, a spatio-temporal
MTS classification task with domain shift. We critically eval-
uated aleatoric and epistemic uncertainty using confidence
calibration, ECE and reliability diagrams. In summary, (1)
the model performance only partly relates to the handedness
of writers, (2) our models are over-confident and miscali-
brated when only trained with right-handed writers and evalu-
ated on left-handed writers, (3) the uncertainty of the models
for small and capital characters combined is related to lower
classification accuracy, and (4) the entropy and mutual in-
formation for individual samples correlate well with the ac-
curacy of our models. Our comparison of different ways to
decompose uncertainty easily generalizes to other classifica-
tion tasks and can be useful for spatio-temporal reasoning.
In terms of Bayesian inference, SWAG and Deep Ensemble
models perform similarly, while SWAG is computationally
less expensive.
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Bernd Bischl, and Christopher Mutschler. Joint Classification
and Trajectory Regression of Online Handwriting using a Multi-
Task Learning Approach. In WACV, pages 266–276, Waikoloa,
HI, January 2022.

[Ott et al., 2022d] Felix Ott, David Rügamer, Lucas Heublein, Tim
Hamann, Jens Barth, Bernd Bischl, and Christopher Mutschler.
Benchmarking Online Sequence-to-Sequence and Character-
based Handwriting Recognition from IMU-Enhanced Pens. In
arXiv:2202.07036, February 2022.

[Ovadia et al., 2019] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary
Nado, D. Sculley, Sebastian Nowozin, Joshua V. Dillon, Bal-
aji Lakshminarayanan, and Jasper Snoek. Can You Trust Your
Model’s Uncertainty? Evaluating Predictive Uncertainty Under
Dataset Shift. In NIPS, volume 32, pages 14003–14014, Decem-
ber 2019.

[Pan and Yang, 2009] Sinno Jialin Pan and Qiang Yang. A Survey
on Transfer Learning. In Trans. on Knowledge and Data Engi-
neering, volume 22(10), pages 1345–1359, October 2009.

[Plamondon and Srihari, 2000] Rejean Plamondon and Sargur N.
Srihari. On-line and Off-line Handwriting Recognition: A Com-
prehensive Survey. In TPAMI, volume 22(1), pages 63–84, Jan-
uary 2000.

[Saenko et al., 2010] Kate Saenko, Brian Kulis, Mario Fritz, and
Trevor Darrell. Adapting Visual Category Models to New Do-
mains. In ECCV, volume 6314, pages 213–226, 2010.

[Schölkopf et al., 2021] Bernhard Schölkopf, Francesco Locatello,
Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh
Goyal, and Yoshua Bengio. Toward Causal Representation
Learning. In Proceedings of the IEEE, volume 109(5), pages
612–634, 2021.

[Shao et al., 2014] Ling Shao, Fan Zhu, and Xuelong Li. Transfer
Learning for Visual Categorization: A Survey. In Trans. on Neu-
ral Networks and Learning Systems, volume 26(5), pages 1019–
1034, July 2014.

[Smith and Gal, 2018] Lewis Smith and Yarin Gal. Understanding
Measures of Uncertainty for Adversarial Example Detection. In
UAI, 2018.

[Sun et al., 2016] Baochen Sun, Jiashin Feng, and Kate Saenko.
Correlation Alignment for Unsupervised Domain Adaptation. In
arXiv:1612.01939, December 2016.

[Wu et al., 2021] Dongxia Wu, Liyao Gao, Xinyue Xiong, Mat-
teo Chinazzi, Alessandro Vespignani, Yi-An Ma, and Rose Yu.
Quantifying Uncertainty in Deep Spatiotemporal Forecasting. In
arXiv:2105.11982, May 2021.

[Zhou et al., 2021] Zhengyang Zhou, Yang Wang, Xike Xie, Lei
Qiao, and Yuantao Li. STUaNet: Understanding Uncertainty
in Spatiotemporal Collective Human Mobility. In WWW, pages
1868–1879, April 2021.

https://proceedings.mlr.press/v80/depeweg18a.html
https://arxiv.org/abs/2107.03342
https://www.mdpi.com/2072-4292/13/3/512
https://dl.acm.org/doi/10.5555/3305381.3305518
https://projecteuclid.org/journals/statistical-science/volume-14/issue-4/Bayesian-model-averaging--a-tutorial-with-comments-by-M/10.1214/ss/1009212519.full
https://github.com/hollance/reliability-diagrams
https://link.springer.com/article/10.1007/s10994-021-05946-3
https://link.springer.com/article/10.1007/s10994-021-05946-3
http://auai.org/uai2018/proceedings/papers/313.pdf
https://dl.acm.org/doi/10.5555/3295222.3295309
https://proceedings.mlr.press/v80/khan18a.html
https://openreview.net/forum?id=Sk_P2Q9sG
https://dl.acm.org/doi/10.5555/3295222.3295387
https://openreview.net/pdf?id=6HN7LHyzGgC
https://ieeexplore.ieee.org/document/6909579
https://dl.acm.org/doi/10.5555/3454287.3455466
https://doi.org/10.1145/3411842
https://arxiv.org/abs/2202.07901
https://arxiv.org/abs/2204.03342
https://openaccess.thecvf.com/content/WACV2022/html/Ott_Joint_Classification_and_Trajectory_Regression_of_Online_Handwriting_Using_a_WACV_2022_paper.html
https://arxiv.org/abs/2202.07036
https://dl.acm.org/doi/abs/10.5555/3454287.3455541
https://ieeexplore.ieee.org/document/5288526
https://ieeexplore.ieee.org/document/5288526
https://ieeexplore.ieee.org/document/824821
https://link.springer.com/chapter/10.1007/978-3-642-15561-1_16
https://cardiacmr.hms.harvard.edu/files/cardiacmr/files/toward_causal_representation_learning.pdf
https://ieeexplore.ieee.org/document/6847217
https://ieeexplore.ieee.org/document/6847217
http://auai.org/uai2018/proceedings/papers/207.pdf
https://arxiv.org/pdf/1612.01939.pdf
https://arxiv.org/abs/2105.11982
https://dl.acm.org/doi/10.1145/3442381.3449817


a b c d e f g h i j k l mn o p q r s t u vwx y z

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

0.005

0.000

0.005

0.010

0.015

0.020

0.025

(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 6: Uncertainty prediction for the Deep Ensemble CNN+BiLSTM model (which outperformed the TCN-based architecture) trained on
the lowercase WD (right-handed only) dataset. Note that the color scale is fixed for all subplots for comparability with Figure 3 and 4.

A Appendices
We propose model parameters in Section A.1 and show an
evaluation per character in Section A.2. We propose results
for the SWAG model in Section A.3.

A.1 Model and UQ Method Parameters
For reproducibility, we state all general model architecture
parameters and propose training parameters for the SWAG
model. For all experiments we use Nvidia Tesla V100-SXM2
GPUs with 32 GB VRAM coupled with Intel Core Xeon
CPUs and 192 GB RAM.

Model Parameters. We use a CNN with dropout rate 20%,
convolutional layers with kernel size 4 and filter size 200. The
temporal cell (LSTM, BiLSTM or TCN) contains 100, 100
or 120 neurons, respectively. We interpolate the time-series
to 64 time steps, and train the model for 2,000 epochs with
early stopping and a batch size of 50.

SWAG Parameters. We initialize the stochastic gradient
descent (SGD) optimizer with initial learning rate 10−2, a
momentum of 0.9, and weight decay of 10−4. The stochas-
tic weight averaging (SWA) burn-in period was run for 10
epochs. SWAG showed a training process with fast conver-
gence.

A.2 Evaluation per Character
Confusion Matrices. We propose the confusion matrices
for the aleatoric and epistemic uncertainty as well as the ac-
curacy (in %) for the uppercase (see Figure 4) and lowercase
(see Figure 6) datasets. While for the combined training,
lower- and uppercase characters are often misclassified, the
separate training leads to confusion of characters with simi-
lar shapes, e.g., for the uppercase task, the model is uncer-
tain for "D" and "P", "U" and "V", and "T" and "X". These
confusions can be identified with the aleatoric and epistemic
uncertainty and correspond with the classification accuracies.
Overall, the uncertainty for lowercase characters is higher
(see Figure 6a) since the writing style of lowercase charac-
ters is oftentimes quite similar, e.g., "r" and "v", "u" and
"v", "h" and "n", and "d" and "q". This also leads to a
lower classification accuracy (see Figure 6c).
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(b) Histogram visualizing the
entropy distribution.

Figure 7: Accuracy and entropy for the SWAG CNN+TCN model
trained on the combined WD (right-handed only) dataset.

Mutual Information and Entropy. Figure 8a shows the
mutual information (MI) per character, and Figure 8b shows
the entropy, respectively. In general, the MI and entropy cor-
relates and are similar for each character. The MI and en-
tropy is high for the characters "U", "u", "v", "x", and "z".
Furthermore, both metrics are higher for lowercase characters
than for uppercase characters. This corresponds to the confu-
sion matrices in Figure 4 and 6 where aleatoric uncertainty
is higher for off-diagonals for lowercase characters.

A.3 SWAG Model Results
This section provides plots for the SWAG model that can di-
rectly be compared to the previously shown Deep Ensemble
model plots. We observe very similar results between SWAG
and Deep Ensemble models. Figure 9 shows the MI and en-
tropy for the SWAG model with the same pattern as for the
Deep Ensemble model with lower absolute values. In Fig-
ure 10, we see the same overconfidence on left-handed data
for SWAG models that have never seen this data similar as
for Deep Ensemble models. The ECE by the SWAG model is
marginally lower than the ECE by the Deep Ensemble model,
but follows the same trend. The heatmaps in Figures 11 for
lowercase and uppercase characters, in Figure 12 for upper-
case characters only, and in Figure 13 for lowercase charac-
ters only of the SWAG model show the same pattern as the
heatmaps for Deep Ensemble models.
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(a) Mutual information per letter.
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(b) Entropy per letter.

Figure 8: Mutual information and entropy per letter for the Deep Ensemble CNN+TCN model trained on the combined WD (right-handed
only) dataset. Note that we skiped every second character in the x-axis (ordered alphabetically) for readability.
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Figure 9: Mutual information and entropy per letter for the SWAG CNN+TCN model trained on the combined WD (right-handed only)
dataset. Note that we skipped every second character in the x-axis (ordered alphabetically) for readability.
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(a) Evaluated on right-handed
writers data.
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(b) Evaluated on right-handed
writers data.
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(c) Evaluated on left-handed writ-
ers data.
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(d) Evaluated on left-handed writ-
ers data.

Figure 10: Reliability diagram for the SWAG CNN+TCN model trained on the combined WD datasets. a) and c): Trained on the combined
right- and left-handed writers datasets. b) and d): Trained on right-handed writers only.
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(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 11: Uncertainty prediction for the SWAG CNN+TCN model trained on the combined WD (right-handed only) dataset. Note that the
color scale is fixed for all subplots for comparability with the other heatmaps, and that we skipped every second character label for readability.

ABCDEFGH I J KLMNOPQRS TUVWX Y Z

A
B
C
D
E
F
G
H
I
J

K
L

M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

0.005

0.000

0.005

0.010

0.015

0.020

0.025

(a) Aleatoric uncertainty.
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(b) Epistemic uncertainty.
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(c) Confusion matrix of accuracy.

Figure 12: Uncertainty prediction for the SWAG CNN+TCN model trained on the uppercase WD (right-handed only) dataset. Note that the
color scale is fixed for all subplots for comparability with the other heatmaps.
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(a) Aleatoric uncertainty.
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(c) Confusion matrix of accuracy.

Figure 13: Uncertainty prediction for the SWAG CNN+TCN model trained on the lowercase WD (right-handed only) dataset. Note that the
color scale is fixed for all subplots for comparability with the other heatmaps.
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